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LETTER TO THE EDITOR

New families of isospectral hydrogen-like potentials

J Oscar Rosas-Ortiz
Departamento deifica Téricaf, Universidad de Valladolid, 47011 Valladolid, Spain

Received 17 March 1998

Abstract. By applying algebraic technigues, we construct a two-parametric family of strictly
isospectral hydrogen-like potentials, as well as some of its one-parametric limits. An additional
one-parametric almost isospectral family of hydrogen-like potentials is also investigated. It is
argued that the construction of a SUSY partner Hamiltonian using a factorization enksy

than the ground-state energy of the departure Hamiltonian is unnecessarily restrictive.

A considerable amount of work exists relating to exactly solvable one-dimensional potentials
in quantum mechanics (QM). The main interest has been to enlarge the number of
analytically solvable potentials using diverse techniques: the Darboux transformation [1],
the Gelfand-Levitan formalism [2], the standard and modified factorizations [3,4], the
supersymmetric (SUSY) QM [5] etc. The underlying ideas of most of these procedures
have been summarized in an algebraic scheme in which a first-order differential operator
intertwines two different Hamiltonians [6]. In particular, the generation of one-parametric
families of potentials isospectral to the traditional ones [2—9] can be performed by means of
this first-order intertwining techniqueThis method also leads naturally to the factorization

of the implied Hamiltonians.

Recently, a generalization of this technique, in which the intertwining operator is of
second order, has been used to derive a two-parametric family of potentials isospectral to
the harmonic oscillator [10]. Thisecond-order intertwining techniq8OIT) is a particular
case withn = 2 of then-order intertwining technique which appears to be the best way in
which to introduce the higher order SUSY QM. In principle, the latter makes it possible to
generater-parametric families of Hamiltonians isospectral to a given Hamiltonian [11-13].

In this paper we shall generate a two-parametric family of radial isospectral hydrogen-
like potentials by means of the SOIT. We shall also show that the one-parametric family
of potentials derived by Feamdez [8] can be recovered from ours. As a final result,
we shall find a one-parametric family of potentials having the same energy levels as the
corresponding radial hydrogen-like potentials except for the ground-state energy level.

The standard procedure used to deal with hydrogen-like potentials in QM reduces to
solve the eigenproblem for a particle in a one-dimensional effective pote¥itia) =
I(1 +1)/r*> — 2/r, wherel = 0,1,2,... is the azimuthal quantum number andis a
dimensionless radial coordinate. For simplicity, instead of working with the standard radial
wavefunctionsR (r), we shall work with the functiong (r) = r R(r) with an inner product
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defined by(y, ¥') = 4 [ ¥ (r)¢'(r)dr. It is well known that the eigenvalues of the
radial HamiltonianH, = —d?/dr? + V;(r) (with fixed [) are given by

1

E,.=Ey=——— k=1,23, ... 1
k== (1)
wherel + k = n. y 5
We are looking for a HamiltoniarH, = —d?/dr? + V;(r), such that the following

intertwining relationship is satisfied [6]:

HyA = AH, 2)
where A is a second-order differential operator to be determined

d? d
A:W—i_ﬂ(r)d_r_'_y(r)' (3

Equations (2) and (3) and the explicit form & and H, lead to the following relations
betweenV;(r), V,(r), B(r) andy (r):

2 B?

B~ 5 + (zw) - - 7) B +2=0 @

~ r+1yn 2

Vi(r) = (:; )—;+2,3, ©)
i+ 1

20 = 2= =2 4 S ©

wherec andd are, in principle, arbitrary constants and the prime denotes a derivative with
respect tor. The key point now becomes solving the nonlinear second-order differential
equation (4) for8(r). First let us enforce that the operatérincludesa;_1a; as a particular
case, wherey = (—d/dr +1/r — 1/1) is the standard factorization operator for the radial
hydrogen-like Hamiltonians [3]. This condition permits us, without a loss of generality, to
fix the constantg andd in (4)—(6) as

(21 — 1)2 1+ (2 —1)2
‘@i T e )
After including (7) in (4) and (6), it turns out that the general solution to (4) becomes
_ r -1
’6(’)2%[% In (%)} 1=23, ... ®8)
B vy 2\2+1 por —
g1(r) = {1— @i (7) /O x“e dx} (9)

A-1 pr 2 pm2¢/(-1)
D B r V2 i / L
g(r)=¢ |:1 l(l—l)jH:H_(Zl—l)! <Z—1> 0 [l(l—l)—x]zdx} (10)

wherev; andv, are integration constants.
The asymptotic behaviour ¢f(r) is given bys(r) ~ (1—-21)/1(1 — 1), wklile it diverges
as(2 — 1)/r, whenr — 0". This suggests to us to write the new potentialr) in (5) as

Vi_o(r) = Vi_o(r) + 22/ (r) 1=2,3,... (11)

wherel’ =1 -2 anda(r) = (r) + (1 — 2)/r, is an appropriate function that makes
evident the limitV,_»(r) — V,_»(r), whenr — 400 andr — 0. The parameter domain
for which o/ (r) is free of singularities is given by;, v, € (—o0, 1); inside this parameter
region, the new two-parametric family of potentié]’&z(r) has the same singularities as
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V,_»(r). Furthermore, fom; = v, = 0 we havex’ = 0 andV,_»(r) = V,_»(r). This means
that V,_»(r) not only governs the asymptotic behaviourof ,(r) but it is also a member
of the family (11).

Now, from equation (2) it becomes apparent that the operadtoacting on the
eigenfunctiongv,,;(r)} of H; provides eigenfunctionén,l_z(r) X Ay (r),1=2,3,...of
H,_, with eigenvaluesz, = Ey, i.e.

~ I(l — Dn?
_o(r) = A r). 12
I/fn,l 2( ) \/(nz—lz)(n2—12+2] — 1) ‘(//nl( ) ( )

However, the set,, ;_»(r)} is not yet complete in the Hilbert space of square-integrable
functionsH. This is clear if we try to answer the following questions: are there functions
1/71_2,6(r) orthogonal to all the/?n,l_z(r)? If so, are they eigenfunctions of_,? In order
to answer these questions, let us assume that th{a}g@te} exists, then

W1-2.e(r), Yn1—2(r)) < (Vr—2,e(r), AP (r)) = (A2, (r), Y (r)) = 0.

Owing to the fact thatf{y,,;(r)} is a complete set irt{, the kernel of the segond-order
differential operatorA’ is a two-dimensional subspa@é. orthogonal to all thej, ;_»(r),

[ =23, .... Let us write them asﬁl,z,é(r) = coexp[[ f(x)dx], wherec is a constant
and f(x) is to be determined. The equati@r’h},,z,e(r) = 0 can be rewritten as
') =BT f(r)+ f2(r) — B'(r) + ¥ (r) = 0. (13)

This Riccati-type differential equation has a general solution given by

1 1 d
f) =7 =+ B0) + o Inleaga(r) + cag2(r)] (14)

whereg1(r) and gz(r) are given in (9) and (10), and andc; are constants. The generic
kernel element is given bw; 2(r) = Co¥i— 20(r)+C_ Wi 2.-1(r), where

- 1—v\ (2% ( 1 ) rle=/lgy(r)
o AN 1=23,...
Vi-2,0(r) \/< ! ) (l) ( ) IA-1) W(g1 g2

and

3 (1=, 2 \Z* 1\ e gr) B
Ve = \/<2l<21>!> (53) @v(its) ey =25

(16)

are both eigenfunctions dff;_, with eigenvaluest;_»o = —1/1?, E;_»_1 = —1/( — 1),
I =23,... respectively. In (15) and (16} (g1, g2) = g1(r)g2(r) — g1(r)g5(r) is the
negative of the Wronskian gf1(r) and g2(r).

Notice that{v;_2 _1, ¥i_2.0, Yus—2.1 = 2, 3,...} is now a complete set ifi{, and their

elements are eigenfunctions 8f_,, [ = 2, 3, ..., with eigenvalues

E,,Zkz—;,—l,—; k=123, .... (17)
’ (=12 127 (+k)?
Comparlng with (1), one can see that this spectrum is identical to thall,of,
i.e. Ei_2r = E;_2x. Hence, the Hamiltoniarfl,_, is strictly isospectral toH,_», and
becauseV,,z(r) depends on two free parametersand v,, a new two-parametric family
of isospectral hydrogen-like potentials has been generated. Some particular cases are worth
discussing in more detalil.

(15)
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Firstly, for v; = v, = 0, the well known hydrogen-like potentidf,_,(r) is always
recovered because it is a member of the faniily,(r).

Let us now take, = 0 (1, = 0), in this case the two-parametric famify_»(r) is a new
one-parametric family which becomes a hydrogen-like potential wher- 0 (v — 0).
In particular, letv; = 0, and

C—lf“wz—a!

Vo = .

2 Yi-1

In this case, the function(r) becomes

1—2 r2A—2g-2r/(-1)
-0 Ty a2 e i gy

In (11) if we changel by I + 1 with «(r) as defined above, we obtain the following
one-parametric family of potentials:

a(r) = 1=2,3,....

~ d F2le2r/l
Viea(r) = Viear) + 25 {yl ~ TxPea/idx } 1=12,... (18)
which was generated by Fémdez in 1984 [8]. Notice that, in the case when— %, the
family (18) gives the particular case derived by Abraham and Moses [7]. Moreover, when
v — oo (v, — 0), we haveV,_1(r) — V,_1(r), just as we have proposed.

The previous potentials can be seen as deformatiori$_qfr) induced by the second
term in (18), which does not change the behavioulpf;(r) at the ends of the interval
[0, 00), but can produce important modifications inside. In particular, there is the possibility
of creating one additional well itv,_1(r) whose depth and position can be changed by
varying y;. On the other hand, the two-parametric family of potentials (11) also admits the
previous interpretation, but more freedom is given by the deforming term (it depends on two
parameters instead of just one as in the previous case). Hence, we now find the possibility
of introducing two wells, one of them with its minimum placed around the global minimum
of V,_»(r) and the other pushed further out. As in the previous one-parametric case, the
depths and positions of the two wells can be modified by changing the two paramgeters
andv,. This is illustrated in figure 1, where two members of the familyr) of (11) are
depicted, together with the undeformed potenyiglr) (broken curve). In figure 2 we have
also plotted the corresponding probability densities for the two energy Iéels = —%,

ELO = —% with v1 = v, = —10. For the lowest level the probability has a maximum
around the left well. On the other hand, the first excited state has two maxima, the highest
one centred around the right well, while the lowest one is situated around the left well.
When we go over the higher excited states, the probabilities resemble increasingly more the
corresponding hydrogen-like densities.

Until now, departing from the hydrogen-like potentidl(r) we have generated a two-
parametric family of solvable potential§_»(r), with the same spectrum and singularities
asV,_o(r). Now, as the intertwining operatet is of second order, it is interesting to look
for its possible factorization in terms of two first-order differential operabgrands,, i.e.

d
A=bby b= tw)  j=12 (19)

This leads toy (r) = wj, + wiwz, andwi(r) = B(r) — wa(r), wherep(r) is given by (8),
and w, has the form given in (14). Hencey (r) takes the form

l 1 d
w1(r) = = — — — —— In[c181(r) + c2g2(r)]. (20)
r [ dr
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Eigure 1. The hydrogen-like potential;_,(r) (broken curve) and two members of the family
Vi—2(r) (full curve) with ! = 3. Here we have chosen equal valuesfprand vy, but it is not
a restriction (see equation (11) and below). Note that in the limit case when0,i =1, 2,
the full curves closely resemble the broken curve.
0.1}
0.05
e [Pro(r)?
0
— -0.05
E
-0.1
-0.15F
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-0.25
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Figure 2. Behaviour of the probability densities of the two first energy Ieve% and _% of
Hj, with v; = v, = —10. The levels are indicated by the broken curves.

It is now clear that when solving (13), we have simultaneously obtained the solutions to
the equationAhZ,,g,e = 0, as well as the factorizations of the operator There is a
continuous family of factorizations because when we change the values afd ¢, in

(20), we are simultaneously changing the operatgrand b,, but maintaining fixed their
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productA = byb;.

The first consequence of this factorization arises after rewriting equation (2) as
Hy_sbsby = by H;. Now suppose that there is a Hamiltoni&fi ;, = —d?/dr? + V",
such thatHl*_lbl = b1H;. Thus szl*—lbl = bob1H;, and we Obtainﬁl_zbz = szl*—l'
Therefore,H;* ; could be considered as an intermediate Hamiltonian betweand H,_,.
Hence, the SOIT can be seen as the iteration of two first-order intertwining transformations.

We note here that from the very beginning we are labelling with the subihdek the
intermediate HamiltoniariH*. This is a consequence of further calculations leading to a
centrifugal term forV* with exactly that index.

In order to ensure that the first-order intertwining relationsHjp, b1 = b1 H; would be
satisfied, the functions); and V;* ; must satisfy some restrictions. The key one becomes
the following Riccati equation:

—wi+ w)? =V, +8=0 (21)

complemented with the typical SUSY relationship , = V; 4+ 2w}, wheres; is a constant
to be determined. We also note that a first-order intertwining relationship of the kind
H} by = b1H, leads naturally to the factorization of the Hamiltoniafs and H;" ;:
H = b}bl + 61, and H ; = blbi + 81. By a similar argument, the Hamiltoniarfg* ;
and H,_, become factorized in terms &6 andb): H* = bbba + 85, and H = bob + 5,.

In order to determine the intermediate Hamiltoniaif ,, we must find inside the
family (20) a member obeying equation (21). In fact, tar= 0 andc, = 1, we have
§1=-1/(1—-1>?1=2,3,.... Thus, the potentiaV* ; (r) can be written as

1(1—21) 2 +2[(g§>2—§/2’g2].
r (82)

The parameter domain for which the family (22) has the same singularity;, asr)

is given by v, € (1,00). The eigenfunctions off;* ;, I = 2,3,... are given by
Wiy o rlegy and ¥,y o ba, with eigenvaluesE; , | = —1/( — 1),

and Ef ;= En, k =1,2,..., respectively. Note the unusual absence of the state

corresponding td; ; , = —1/12. A direct comparison of the spectra shows tht, () is
almost isospectral t®,_;, the difference resting on the ground-state level position.
The next first-order intertwining transformation gives a different factorizatiod;bf

and some interesting new results. The absent energy Bveh = E} ;o is now added to
the spectrum ofd;* ; in order to generaté?,_z. However, this means that the factorization
energy in this second step is greater than the ground-state energy lekigl ,ofand this
naturally fills thehole generated by the first factorization. The eigenfupctionf]pfz, in
terms of those off" ;, [ = 2,3,..., are given by{y; 2 1 & barj" 1 4, Y120, Y12
bayry,_1}, Where 1}1_2,0 x exp(— [ wa(x)dx) is the eigenfunction associated with the
‘missing’ energy levelEy |, = E;_p0. A direct calculation shows that this set of
eigenfunctions is the same as that derived by means of the SOIT.

Vi) = (22)

Concluding remarks. In this paper we have shown that the SOIT allows one to derive a two-
parametric family of isospectral hydrogen-like potentials. The iteration of two first-order
intertwining transformations leads to the same results but gives additional information. Thus,
against the standard statement of SUSY QM, there are cases where a factorization energy
greater than the ground-state energy of the departure Hamiltonian leads to a physically
acceptable SUSY partner. A deeper discussion of these first-order intertwining cases will
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be given elsewhere [13]. Finally, all the potentials presented here have the same kind of
singularity at a fixed pointr( = 0) as the initial hydrogen-like Hamiltonian. The case
when the intertwined potentials are non-singular has been illustrated barféeret al

for the harmonic oscillator [6, 10, 12], while the case when the SUSY partner of the
oscillator potential has a movable singularity has been successfully interpreted [14]. The
corresponding problem for a family of isospectral hydrogen-like potentials with a different
singularity as those o¥;(r) in r = 0 is open.

This work is supported by a Postdoctoral CONACYT fellowshig#it¢o) in the programme
‘Programa de Estancias Posdoctorales en Instituciones del extranjero 1997-19%&
author is indebted to DD J Ferrandez for enlightenning discussions and suggestions.
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