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LETTER TO THE EDITOR

New families of isospectral hydrogen-like potentials

J Oscar Rosas-Ortiz†
Departamento de Fı́sica Téorica‡, Universidad de Valladolid, 47011 Valladolid, Spain

Received 17 March 1998

Abstract. By applying algebraic techniques, we construct a two-parametric family of strictly
isospectral hydrogen-like potentials, as well as some of its one-parametric limits. An additional
one-parametric almost isospectral family of hydrogen-like potentials is also investigated. It is
argued that the construction of a SUSY partner Hamiltonian using a factorization energyδ less
than the ground-state energy of the departure Hamiltonian is unnecessarily restrictive.

A considerable amount of work exists relating to exactly solvable one-dimensional potentials
in quantum mechanics (QM). The main interest has been to enlarge the number of
analytically solvable potentials using diverse techniques: the Darboux transformation [1],
the Gelfand–Levitan formalism [2], the standard and modified factorizations [3, 4], the
supersymmetric (SUSY) QM [5] etc. The underlying ideas of most of these procedures
have been summarized in an algebraic scheme in which a first-order differential operator
intertwines two different Hamiltonians [6]. In particular, the generation of one-parametric
families of potentials isospectral to the traditional ones [2–9] can be performed by means of
this first-order intertwining technique. This method also leads naturally to the factorization
of the implied Hamiltonians.

Recently, a generalization of this technique, in which the intertwining operator is of
second order, has been used to derive a two-parametric family of potentials isospectral to
the harmonic oscillator [10]. Thissecond-order intertwining technique(SOIT) is a particular
case withn = 2 of then-order intertwining technique which appears to be the best way in
which to introduce the higher order SUSY QM. In principle, the latter makes it possible to
generaten-parametric families of Hamiltonians isospectral to a given Hamiltonian [11–13].

In this paper we shall generate a two-parametric family of radial isospectral hydrogen-
like potentials by means of the SOIT. We shall also show that the one-parametric family
of potentials derived by Fernández [8] can be recovered from ours. As a final result,
we shall find a one-parametric family of potentials having the same energy levels as the
corresponding radial hydrogen-like potentials except for the ground-state energy level.

The standard procedure used to deal with hydrogen-like potentials in QM reduces to
solve the eigenproblem for a particle in a one-dimensional effective potentialVl(r) =
l(l + 1)/r2 − 2/r, where l = 0, 1, 2, . . . is the azimuthal quantum number andr is a
dimensionless radial coordinate. For simplicity, instead of working with the standard radial
wavefunctionsR(r), we shall work with the functionsψ(r) ≡ rR(r) with an inner product
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defined by〈ψ,ψ ′〉 ≡ 4π
∫ +∞

0 ψ̄(r)ψ ′(r) dr. It is well known that the eigenvalues of the
radial HamiltonianHl = −d2/dr2+ Vl(r) (with fixed l) are given by

En ≡ Elk = − 1

(l + k)2 k = 1, 2, 3, . . . (1)

wherel + k = n.
We are looking for a HamiltonianH̃l′ = −d2/dr2 + Ṽl′(r), such that the following

intertwining relationship is satisfied [6]:

H̃l′A = AHl (2)

whereA is a second-order differential operator to be determined

A ≡ d2

dr2
+ β(r) d

dr
+ γ (r). (3)

Equations (2) and (3) and the explicit form ofHl and H̃l′ lead to the following relations
betweenVl(r), Ṽl′(r), β(r) andγ (r):

ββ ′′ − β
2

2
+
(

2γ (r)− β ′ − β
2

2

)
β2+ 2c = 0 (4)

Ṽl′(r) = l(l + 1)

r2
− 2

r
+ 2β ′ (5)

2γ (r) = β2− β ′ − 2
l(l + 1)

r2
+ 1

r
− d (6)

wherec andd are, in principle, arbitrary constants and the prime denotes a derivative with
respect tor. The key point now becomes solving the nonlinear second-order differential
equation (4) forβ(r). First let us enforce that the operatorA includesal−1al as a particular
case, whereal = (−d/dr + l/r − 1/l) is the standard factorization operator for the radial
hydrogen-like Hamiltonians [3]. This condition permits us, without a loss of generality, to
fix the constantsc andd in (4)–(6) as

c = (2l − 1)2

4l4(l − 1)4
d = 1+ (2l − 1)2

2l2(l − 1)2
. (7)

After including (7) in (4) and (6), it turns out that the general solution to (4) becomes

β(r) = 1− 2l

l2(l − 1)2

[
d

dr
ln

(
g2(r)

g1(r)

)]−1

l = 2, 3, . . . (8)

g1(r) =
{

1− ν1

(2l)!

(
2

l

)2l+1 ∫ r

0
x2le−2x/l dx

}
(9)

g2(r) = er/ l(l−1)

[
1− r

l(l − 1)

]{
1+ ν2

(2l − 1)!

(
2

l − 1

)2l−1 ∫ r

0

x2le−2x/(l−1)

[l(l − 1)− x]2
dx

}
(10)

whereν1 andν2 are integration constants.
The asymptotic behaviour ofβ(r) is given byβ(r) ∼ (1−2l)/ l(l−1), while it diverges

as(2l− 1)/r, whenr → 0+. This suggests to us to write the new potentialṼl′(r) in (5) as

Ṽl−2(r) = Vl−2(r)+ 2α′(r) l = 2, 3, . . . (11)

where l′ = l − 2 andα(r) ≡ β(r) + (1− 2l)/r, is an appropriate function that makes
evident the limitṼl−2(r) → Vl−2(r), when r → +∞ and r → 0. The parameter domain
for which α′(r) is free of singularities is given byν1, ν2 ∈ (−∞, 1); inside this parameter
region, the new two-parametric family of potentialsṼl−2(r) has the same singularities as
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Vl−2(r). Furthermore, forν1 = ν2 = 0 we haveα′ = 0 andṼl−2(r) = Vl−2(r). This means
thatVl−2(r) not only governs the asymptotic behaviour ofṼl−2(r) but it is also a member
of the family (11).

Now, from equation (2) it becomes apparent that the operatorA acting on the
eigenfunctions{ψnl(r)} of Hl provides eigenfunctions̃ψn,l−2(r) ∝ Aψnl(r), l = 2, 3, . . . of
H̃l−2 with eigenvaluesẼlk = Elk, i.e.

ψ̃n,l−2(r) = l(l − 1)n2√
(n2− l2)(n2− l2+ 2l − 1)

Aψnl(r). (12)

However, the set{ψ̃n,l−2(r)} is not yet complete in the Hilbert space of square-integrable
functionsH. This is clear if we try to answer the following questions: are there functions
ψ̃l−2,ε(r) orthogonal to all theψ̃n,l−2(r)? If so, are they eigenfunctions of̃Hl−2? In order
to answer these questions, let us assume that the set{ψ̃l−2,ε} exists, then

〈ψ̃l−2,ε(r), ψ̃n,l−2(r)〉 ∝ 〈ψ̃l−2,ε(r), Aψnl(r)〉 = 〈A†ψ̃l−2,ε(r), ψnl(r)〉 = 0.

Owing to the fact that{ψnl(r)} is a complete set inH, the kernel of the second-order
differential operatorA† is a two-dimensional subspaceHε orthogonal to all theψ̃n,l−2(r),
l = 2, 3, . . . . Let us write them as̃ψl−2,ε(r) = c0 exp[

∫
f (x) dx], wherec0 is a constant

andf (x) is to be determined. The equationA†ψ̃l−2,ε(r) = 0 can be rewritten as

f ′(r)− β(r)f (r)+ f 2(r)− β ′(r)+ γ (r) = 0. (13)

This Riccati-type differential equation has a general solution given by

f (r) = 1

l
− l

r
+ β(r)+ d

dr
ln[c1g1(r)+ c2g2(r)] (14)

whereg1(r) andg2(r) are given in (9) and (10), andc1 andc2 are constants. The generic
kernel element is given bỹψl−2,ε(r) = C0ψ̃l−2,0(r)+ C−1ψ̃l−2,−1(r), where

ψ̃l−2,0(r) =
√(

1− ν1

(2l)!

)(
2

l

)2l+1

(2l − 1)

(
1

l(l − 1)

)
rle−r/ lg2(r)

W(g1, g2)
l = 2, 3, . . .

(15)

and

ψ̃l−2,−1(r) =
√(

1− ν2

2l(2l)!

)(
2

l − 1

)2l+1

(2l − 1)

(
1

l(l − 1)

)
rle−r/ lg1(r)

W(g2, g1)
l = 2, 3, . . .

(16)

are both eigenfunctions of̃Hl−2 with eigenvaluesẼl−2,0 = −1/l2, Ẽl−2,−1 = −1/(l − 1)2,
l = 2, 3, . . . respectively. In (15) and (16),W(g1, g2) = g′1(r)g2(r) − g1(r)g

′
2(r) is the

negative of the Wronskian ofg1(r) andg2(r).
Notice that{ψ̃l−2,−1, ψ̃l−2,0, ψ̃n,l−2, l = 2, 3, . . .} is now a complete set inH, and their

elements are eigenfunctions of̃Hl−2, l = 2, 3, . . . , with eigenvalues

Ẽl−2,k = − 1

(l − 1)2
,− 1

l2
,− 1

(l + k)2 k = 1, 2, 3, . . . . (17)

Comparing with (1), one can see that this spectrum is identical to that ofHl−2,
i.e. El−2,k = Ẽl−2,k. Hence, the HamiltonianH̃l−2 is strictly isospectral toHl−2, and
becauseṼl−2(r) depends on two free parametersν1 and ν2, a new two-parametric family
of isospectral hydrogen-like potentials has been generated. Some particular cases are worth
discussing in more detail.
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Firstly, for ν1 = ν2 = 0, the well known hydrogen-like potentialVl−2(r) is always
recovered because it is a member of the familyṼl−2(r).

Let us now takeν1 = 0 (ν2 = 0), in this case the two-parametric familỹVl−2(r) is a new
one-parametric family which becomes a hydrogen-like potential whenν2 → 0 (ν1 → 0).
In particular, letν1 = 0, and

ν2 =
(
l − 1

2

)2l−1
(2l − 2)!

γl−1
.

In this case, the functionα(r) becomes

α(r) = 1− 2l

l(l − 1)
+ r2l−2e−2r/(l−1)

γl−1−
∫ r

0 x
2l−2e−2x/(l−1) dx

l = 2, 3, . . . .

In (11) if we changel by l + 1 with α(r) as defined above, we obtain the following
one-parametric family of potentials:

Ṽl−1(r) = Vl−1(r)+ 2
d

dr

{
r2le−2r/ l

γl −
∫ r

0 x
2le−2x/l dx

}
l = 1, 2, . . . (18)

which was generated by Fernández in 1984 [8]. Notice that, in the case whenγl → 1
4, the

family (18) gives the particular case derived by Abraham and Moses [7]. Moreover, when
γl →∞ (ν2→ 0), we haveṼl−1(r)→ Vl−1(r), just as we have proposed.

The previous potentials can be seen as deformations ofVl−1(r) induced by the second
term in (18), which does not change the behaviour ofVl−1(r) at the ends of the interval
[0,∞), but can produce important modifications inside. In particular, there is the possibility
of creating one additional well inVl−1(r) whose depth and position can be changed by
varyingγl . On the other hand, the two-parametric family of potentials (11) also admits the
previous interpretation, but more freedom is given by the deforming term (it depends on two
parameters instead of just one as in the previous case). Hence, we now find the possibility
of introducing two wells, one of them with its minimum placed around the global minimum
of Vl−2(r) and the other pushed further out. As in the previous one-parametric case, the
depths and positions of the two wells can be modified by changing the two parametersν1

andν2. This is illustrated in figure 1, where two members of the familyṼ1(r) of (11) are
depicted, together with the undeformed potentialV1(r) (broken curve). In figure 2 we have
also plotted the corresponding probability densities for the two energy levelsẼ1,−1 = − 1

4,
Ẽ1,0 = − 1

9 with ν1 = ν2 = −10. For the lowest level the probability has a maximum
around the left well. On the other hand, the first excited state has two maxima, the highest
one centred around the right well, while the lowest one is situated around the left well.
When we go over the higher excited states, the probabilities resemble increasingly more the
corresponding hydrogen-like densities.

Until now, departing from the hydrogen-like potentialVl(r) we have generated a two-
parametric family of solvable potentials̃Vl−2(r), with the same spectrum and singularities
asVl−2(r). Now, as the intertwining operatorA is of second order, it is interesting to look
for its possible factorization in terms of two first-order differential operatorsb1, andb2, i.e.

A = b2b1 bj = d

dr
+ wj(r) j = 1, 2. (19)

This leads toγ (r) = w′2 + w1w2, andw1(r) = β(r) − w2(r), whereβ(r) is given by (8),
andw2 has the form given in (14). Hence,w1(r) takes the form

w1(r) = l

r
− 1

l
− d

dr
ln[c1g1(r)+ c2g2(r)]. (20)
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Figure 1. The hydrogen-like potentialVl−2(r) (broken curve) and two members of the family
Ṽl−2(r) (full curve) with l = 3. Here we have chosen equal values forν1 andν2, but it is not
a restriction (see equation (11) and below). Note that in the limit case whenνi → 0, i = 1, 2,
the full curves closely resemble the broken curve.

Figure 2. Behaviour of the probability densities of the two first energy levels− 1
4 and− 1

9 of

H̃1, with ν1 = ν2 = −10. The levels are indicated by the broken curves.

It is now clear that when solving (13), we have simultaneously obtained the solutions to
the equationA†ψ̃l−2,ε = 0, as well as the factorizations of the operatorA. There is a
continuous family of factorizations because when we change the values ofc1 and c2 in
(20), we are simultaneously changing the operatorsb1 andb2, but maintaining fixed their
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productA = b2b1.
The first consequence of this factorization arises after rewriting equation (2) as

H̃l−2b2b1 = b2b1Hl . Now suppose that there is a HamiltonianH ∗l−1 = −d2/dr2 + V ∗l−1

such thatH ∗l−1b1 = b1Hl . Thus b2H
∗
l−1b1 = b2b1Hl , and we obtainH̃l−2b2 = b2H

∗
l−1.

Therefore,H ∗l−1 could be considered as an intermediate Hamiltonian betweenHl , andH̃l−2.
Hence, the SOIT can be seen as the iteration of two first-order intertwining transformations.

We note here that from the very beginning we are labelling with the subindexl− 1 the
intermediate HamiltonianH ∗. This is a consequence of further calculations leading to a
centrifugal term forV ∗ with exactly that index.

In order to ensure that the first-order intertwining relationshipH ∗l−1b1 = b1Hl would be
satisfied, the functionsw1 andV ∗l−1 must satisfy some restrictions. The key one becomes
the following Riccati equation:

−w′1+ (w1)
2− Vl + δ1 = 0 (21)

complemented with the typical SUSY relationshipV ∗l−1 = Vl + 2w′1, whereδ1 is a constant
to be determined. We also note that a first-order intertwining relationship of the kind
H ∗l−1b1 = b1Hl leads naturally to the factorization of the HamiltoniansHl and H ∗l−1:

Hl = b
†
1b1 + δ1, andH ∗l−1 = b1b

†
1 + δ1. By a similar argument, the HamiltoniansH ∗l−1

andH̃l−2 become factorized in terms ofb2 andb†2: H ∗ = b†2b2+ δ2, andH̃ = b2b
†
2+ δ2.

In order to determine the intermediate HamiltonianH ∗l−1, we must find inside the
family (20) a member obeying equation (21). In fact, forc1 = 0 and c2 = 1, we have
δ1 = −1/(l − 1)2, l = 2, 3, . . . . Thus, the potentialV ∗l−1(r) can be written as

V ∗l−1(r) =
l(l − 1)

r2
− 2

r
+ 2

[
(g′2)

2− g′′2g2

(g2)2

]
. (22)

The parameter domain for which the family (22) has the same singularity asVl−1(r)

is given by ν2 ∈ (1,∞). The eigenfunctions ofH ∗l−1, l = 2, 3, . . . are given by
ψ∗l−1,−1 ∝ rle−r/ l/g2, and ψ∗n,l−1 ∝ b1ψnl , with eigenvaluesE∗l−1,−1 = −1/(l − 1)2,
and E∗l−1,k = Elk, k = 1, 2, . . . , respectively. Note the unusual absence of the state
corresponding toE∗l−1,0 = −1/l2. A direct comparison of the spectra shows thatV ∗l−1(r) is
almost isospectral toVl−1, the difference resting on the ground-state level position.

The next first-order intertwining transformation gives a different factorization ofH ∗l−1

and some interesting new results. The absent energy levelẼl−2,0 = E∗l−1,0 is now added to

the spectrum ofH ∗l−1 in order to generatẽHl−2. However, this means that the factorization
energy in this second step is greater than the ground-state energy level ofH ∗l−1, and this
naturally fills thehole generated by the first factorization. The eigenfunctions ofH̃l−2, in
terms of those ofH ∗l−1, l = 2, 3, . . . , are given by{ψ̃l−2,−1 ∝ b2ψ

∗
l−1,−1, ψ̃l−2,0, ψ̃n,l−2 ∝

b2ψ
∗
n,l−1}, where ψ̃l−2,0 ∝ exp(− ∫ w2(x) dx) is the eigenfunction associated with the

‘missing’ energy levelE∗l−1,0 = Ẽl−2,0. A direct calculation shows that this set of
eigenfunctions is the same as that derived by means of the SOIT.

Concluding remarks. In this paper we have shown that the SOIT allows one to derive a two-
parametric family of isospectral hydrogen-like potentials. The iteration of two first-order
intertwining transformations leads to the same results but gives additional information. Thus,
against the standard statement of SUSY QM, there are cases where a factorization energy
greater than the ground-state energy of the departure Hamiltonian leads to a physically
acceptable SUSY partner. A deeper discussion of these first-order intertwining cases will
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be given elsewhere [13]. Finally, all the potentials presented here have the same kind of
singularity at a fixed point (r = 0) as the initial hydrogen-like Hamiltonian. The case
when the intertwined potentials are non-singular has been illustrated by Fernándezet al
for the harmonic oscillator [6, 10, 12], while the case when the SUSY partner of the
oscillator potential has a movable singularity has been successfully interpreted [14]. The
corresponding problem for a family of isospectral hydrogen-like potentials with a different
singularity as those ofVl(r) in r = 0 is open.

This work is supported by a Postdoctoral CONACyT fellowship (México) in the programme
‘Programa de Estancias Posdoctorales en Instituciones del extranjero 1997-1998’. The
author is indebted to Dr D J Ferńandez for enlightenning discussions and suggestions.
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[10] Ferńandez D J, Glasser M L and Nieto L M 1998 Phys. Lett.A 240 15
[11] Andrianov A A, Ioffe M V and Spiridonov V P 1993Phys. Lett.A 174 273

Andrianov A A, Ioffe M V, Cannata F and Dedonder J P 1995Int. J. Mod. Phys.A 10 2683
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